Building connections that last*

ABZ 201/202 Resilient Seated Butterfly Valves Datasheet

Resilient Seated Butterfly Valves **ABZ 201/202**

Features and Benefits

- Bodies are machined to high tolerance. Guaranteed standard dimensions for interchangeability of parts and operators.
- Top and bottom bushings protects the stem from side thrust of operator. They are made of impact and corrosion resistant materials.
- 3. Special double V-shape of stem seal self-adjusts to protect the stem area for either vacuum or pressure use.
- 4. Pin ensures positive engagement of upper stem to disc.
- The special snap-in Resil-O-Seat[™] design fixes seat in place without bonding. The Resil-O-Seat is 100% field replaceable - no special tools required.

- 6. Stem and body are isolated from line media by the interference fit of the primary seal created between the disc and seat.
- Valve has an upper and lower stem with an internal drive with tremendous strength. This design gives you a thin profile disc for superior flow characteristics with no external connectors.
- Disc edge is individually processed through machining and hand buffing for a smooth edge, providing a bubble tight shutoff and maximum seat life.
- Resil-O-Seat forms a seal against all standard ANSI 125/150 flanges. Gasketing requirements are eliminated.

Standard Construction Specification

Body

Cast Iron

Disc/Stem

316 Stainless Steel, Ductile Iron, Epoxy Coated Ductile Iron

Stem 17-4 Stainless Steel

Resilient Seat

EPDM, Buna-N, Viton, Teflon[®]. Seats with EPDM backing material, Natural Rubber, White Neoprene

Stem Bushing Teflon – Graphite Impregnated

Stem Packing Buna-N

Additional materials are available for a wide selection of applications.

Resilient Seated Butterfly Valves **ABZ 201/202**

Torque Chart - Fig. 201/202

Valve		Normal (Conditions		Severe Conditions						
Size	Δ P=0	Δ P=50	Δ P=100	Δ P=150	Δ P=0	Δ P=50	Δ P=100	Δ P=150			
14"	5,160	6,120	7,080	8,040	7,740	8,700	9,660	10,620			
16"	7,680	8,040	9,480	10,920	9,900	11,340	12,780	14,220			
18"	8,280	10,440	12,600	14,760	12,432	14,580	16,020	18,900			
20"	10,200	13,200	16,200	19,200	14,604	19,500	21,300	24,300			

Undercut disc available.

All torques shown in inch lbs.

20% Safety factor already included.

Rated Flow Coefficient (Cv) - Fig. 201/202

Valve	Angle of Disc Opening													
Size	10°	20°	30°	40°	50°	60°	70°	80°	90°					
2"	1.67	7.7	17	29	48	74	115	145	195					
14"	61.30	326.0	765	1,380	2,216	3,497	5,999	10,397	15,105					
16"	81.70	426.0	1,000	1,792	2,858	4,629	7,934	13,728	19,950					
18"	106.00	549.0	1,294	2,290	3,668	5,952	10,243	17,874	25,970					
20"	124.00	684.0	1,598	2,876	4,648	7,396	12,787	22,343	32,465					

Sized for stainless disc, does not cover encapsulated disc trims.

Cv is defined as the volume of water in U.S.G.P.M. that will flow through a given restriction or valve opening with a pressure drop of one (1) p.s.i. at room temperature. Recommended control angles are between 20° -75° open.

Resilient Seated Butterfly Valves **ABZ 201/202**

Notes

- The figures 201 and 202 cannot be used on pipe or flange with an inside diameter less than the "E" dimension.
- Valves are rated up to 150 PSI bi-directional service and 75 PSI end of line rating. Undercut disc is rated up to 50 PSI bi-directional service and 25 PSI end of line rating. Teflon seats are not recommended with an undercut disc.
- Designed in accordance with sections of API 609 Category A, ASME 16.1/16.5, ASME 16.34 and MSS SP67. Design tested in accordance with API 598.
- 4. Compatible with ANSI Class 125/150 flange standards.

Dimensional Chart - Fig. 201/202

Valve Size		Dimensions										Top Plate Drilling			Fig. 919 Tapped Lug Data			Weight (Pounds)	
	А	В	С	D	E	F	G	Н	К	T.O.L.	Bolt Circle	No. Holes	Hole Dia.	Bolt Circle	No. Holes	Тар	201	202	
14"	13¼	17%16	12	3	131/8	6	21/4	13⁄8	⁵ / ₁₆ X ⁵ / ₁₆	25.25	5	4	^{9/} 16	183⁄4	12	1-8 UNC	2	2	
16"	15¼	201/8	16	4	15	6	21/4	15⁄8	³ / ₈ X ³ / ₈	27.50	5	4	⁹ / ₁₆	211⁄4	16	1-8 UNC	2	2	
18"	17¼	211/2	16	41/4	161/8	6	3	17/8	½χ ½	30.88	61⁄2	4	¹³ / ₁₆	22³⁄4	16	11/8 -7 UNC	2	2	
20"	19¼	23¾	16	5	18¾	6	3	21/8	½χ ½	33.50	61⁄2	4	¹³ / ₁₆	25	20	11/8-7 UNC	2	2	

All standard seats are Food Grade with the exception of Viton.

About ASC Engineered Solutions

ASC Engineered Solutions is defined by quality—in its products, services and support. With more than 1,400 employees, the company's portfolio of precision–engineered piping support, valves and connections provides products to more than 4,000 customers across industries, such as mechanical, industrial, fire protection, oil and gas, and commercial and residential construction. Its portfolio of leading brands includes ABZ Valve®, AFCON®, Anvil®, Anvil EPS, Anvil Services, Basic–PSA, Beck®, Catawissa, Cooplet®, FlexHead®, FPPI®, Gruvlok®, J.B. Smith, Merit®, North Alabama Pipe, Quadrant®, SCI®, Sharpe®, SlideLOK®, SPF® and SprinkFLEX®. With headquarters in Commerce, CA, and Exeter, NH, ASC also has ISO 9001:2015 certified production facilities in PA, TN, IL, TX, AL, LA, KS, and RI.

asc-es.com

Building connections that last*

